
1

Flotsam: Evaluating Implementations of the
Raft Consensus Algorithm

CS244B Project Report
Connor Gilbert

Abstract—The Raft consensus algorithm [1] is designed
to be easily understood and implemented. Many open-
source projects now implement Raft as a library or
standalone service or incorporate it into more complicated
distributed systems. However, the quality of these imple-
mentations has not been studied extensively. This work
presents a system, Flotsam, for empirically testing Raft
open-source implementations for errors. Randomized test
cases are generated and tested in a virtualized environment
based on Docker. Test operations are specified using a
general interface to allow new implementations to be
simply “plugged in”, and outputs are checked against each
other using configurable criteria after injecting. This work
identifies several implementations of Raft and tests them
against each other using Flotsam. The promise of this
approach, both for assessing Raft implementations and
for testing distributed systems in general, is demonstrated
through initial test results.

I. INTRODUCTION

The Raft consensus algorithm [1] is designed
to be easily understood and implemented. Its
understandability has led to a large number of
implementations—56 separate open-source imple-
mentations are listed in one collection alone [2].
These implementations are of various levels of
quality, as quickly becomes clear through cursory
inspection of repository “README” files and issue
trackers, some of which include prominent warnings
about problems with their correctness or reliability.

The proliferation of Raft implementations, and
their relative uniformity (especially compared with
other distributed consensus algorithms), gives a
unique opportunity to test them against each other
rather than against a separately-generated specifica-
tion. This approach has some clear benefits: it does
not require—though it can include—labor-intensive

The author is with the Computer Science Department at Stanford
University, Stanford, CA 94305.

Email: connorg@cs.stanford.edu

manual test case generation, and it does not rely on
a human to accurately specify the correct outputs
given a specification like an academic paper or an
RFC. While generating test cases without a priori
expected outputs does have some disadvantages,
including the possibility that all of the tested im-
plementations might behave incorrectly in the same
way or that the same observed behavior might hide
lower-level errors, the advantages make it at least
worth exploring.

This work presents Flotsam, a prototype testing
framework for Raft implementations that uses this
approach. It pits many Rafts against each other
and attempts to identify any wreckage that would
indicate inconsistencies between them. The remain-
der of this paper briefly discusses related work
(section II), outlines Flotsam’s design (section III),
and evaluates its performance (section IV). Finally,
it identifies further work (section V) and concludes
(section VI).

II. RELATED WORK

Naturally, almost as long as there have been
distributed systems, there have been efforts to check
that they behave as they should. However, existing
strategies tend to rely on manual test case generation
and concentrate on testing the correctness of a single
system at a time.

Jepsen [3] has been used to discover errors in a
variety of distributed systems, including the Raft-
based systems etcd and Consul [4]. Jepsen has
produced a number of important results and inspired
many other efforts, including this one. However, it
concentrates on testing a single system at a time and
checks for specific desired traits (e.g., linearizability
or durability) rather than pitting implementations
against each other.

Blockade [5] creates virtualized test environments
for distributed systems using Docker [6]. It simu-



2

lates network problems, providing configurable la-
tency, packet loss, and partitions. Blockade does not
provide any testing facilities, and is instead meant
to be run interactively or scripted into a larger test
framework.1

More generally, there are a variety of approaches
for checking or proving correctness of systems—
whether distributed or not—ranging from “bug-
checking”-style empirical tests to formal proofs. It
is out of this work’s scope to provide a summary or
assessment of the full breadth of these techniques.

III. SYSTEM DESIGN

Flotsam’s testing system pits different Raft im-
plementations (called candidates) against each other
and checks that the observable output matches
across the candidates.

A Flotsam test is specified by a JSON file that
details the candidates to test, the test generators to
use, the output checking mechanisms to employ, and
other necessary parameters, including the number of
nodes that will participate in the protocol.

Flotsam can currently only test Raft implementa-
tions that provide a key-value store implementation.
It would be possible to extend Flotsam to other
abstractions, or to implement key-value stores on
top of other libraries, if desired. For this prototype,
the simple get/set interface provided by a key-value
store allows a simpler testing framework.

Flotsam interacts with each implementation
through a consistent interface which must be written
to “wrap” each one. This takes the form of two
functions: read(key) and write(key,val);
each candidate simply specifies the proper actions
required to get or set a value. Generally, this takes
the form of using a library function to make an
HTTP request, but implementations may specify
arbitrary actions: the lite-raft POSIX shell imple-
mentation, for instance, uses docker exec calls
to execute shell scripts. If, for instance, the leader
might change (as in Raft), the candidate must
specify how to recover. (This may be as simple
as implementing a round-robin loop, depending on
the behavior of the implementation and how it
communicates leader changes and errors.)

The parties to the protocol are run in virtualized
containers that are specified by the user and then

1We became aware of Blockade incidentally through Internet
searches after this work was substantially complete.

managed by the system. The container is specified
using a Dockerfile in the Docker system [6], which
details the dependencies, environmental configura-
tion, and preparation steps necessary to run the can-
didate program. Since implementations may need to
configure themselves, for example to provide each
other with runtime information like IP addresses
or ports, Flotsam’s setup interface consists of three
functions: create, which allocates the containers
with necessary static files and programs pre-loaded;
launch, which launches the Docker container (but
not the candidate program) so that configurations
can be generated; and start, which actually starts
the candidate program.

A test generator produces a test plan that is
run against each candidate implementation. A test
plan consists of get/set operations interspersed with
failures. This version of Flotsam supports host
failures and network partitions. Host failures are
implemented by killing the entire Docker container.
Failed hosts do not recover in this version of Flot-
sam. Network partitions are implemented with host-
based iptables rules that drop traffic between
the partitioned hosts and non-partitioned hosts. We
initially sought to allow traffic from the test client
to the partitioned containers while effectively par-
titioning the targeted hosts from the rest of the
Raft parties, but we disabled this access for this
prototype because of the difficulty of distinguishing
partitioned hosts from properly functioning ones in
the client.

Flotsam simulates a client that issues the planned
requests to the virtualized containers. During the
test execution, the system performs writes to and
reads from the parties. After all of the candidates
have completed the test plan, the verification system
checks for inconsistencies. The verification system
can be configured to check various conditions; in
this version of Flotsam, we simply check that the
result of each read request is the same across each
implementation.

IV. EVALUATION

A. Implementations to Test

We present the results of two sets of tests.
Toy Project: We tested the relatively popular

goraft implementation [7] using its raftd key-value
store reference implementation [8], against a “toy”



3

version of raftd that we modified to remove persis-
tence by disabling the write path [9]. The goal of
this test is to demonstrate that Flotsam can detect
this obvious class of errors.

Real Implementations: We selected three im-
plementations of the Raft algorithm to demon-
strate “real-world” applicability: raftd [8], the li-
braft project’s example KayVee store [10], and lite-
raft [11]. We selected these from the subset of
implementations on the Raft algorithm website that
implemented a key-value store [2]. The goal of this
test is to demonstrate Flotsam’s ability to test real
implementations even across a variety of different
architectures—raftd is written in Go, KayVee in
Java, and lite-raft in POSIX shell script.

B. Experimental Setup and Procedure
Our experimental setup consists of a Raft cluster

of five nodes. (The number of nodes can be recon-
figured per experiment.)

The cluster is configured and, if needed, is given
time to initialize (e.g., to elect an initial leader).

Then, we begin to issue requests according to a
testing plan. The testing plan is the same across all
implementations and is specified as a sequence of
get/set operations and network or host state changes.
State changes could include loss of network connec-
tivity with a node or a fail-stop host failure.

C. Our Testing Plans
The default testing plan issues requests over a

finite key-space and distributes the volume of re-
quests per key according to a uniform distribution.
For simplicity, reads immediately follow writes;
however, reads could be allowed even before writes,
since empty responses can be compared just like
non-empty ones. Other testing plans can be designed
to stress different aspects of a Raft implementation;
for instance, its ability to handle many keys and
its ability to handle multiple updates to the same
key might be better exercised with a power-law
distribution across the key-space.

D. Results
Flotsam accurately detects the different behavior

of the two candidate implementations in the “Toy
Project” case. The communicated result of a write
is the same across the implementations, so problems

are only visible when the test plan includes a
read for a key for which a write has previously
“succeeded”. These errors are, as expected, reported
by Flotsam.

The efficacy of host failure and partition failures
has been verified through inspection of logs on
candidate containers and by the test client’s logged
detection of nonfunctional leaders.

The behavior of the candidates in the “Real Im-
plementations” test has not yet diverged across mul-
tiple tests of over 1000 requests each. More complex
testing and failure injection scenarios might cause
the candidates’ behavior to diverge.

V. FURTHER WORK

This work is limited in scope due to the limited
time available for its implementation. However, the
prototype system we present could be extended in
a number of ways. It is specifically designed for
extensibility: test generation, setup and interaction
with candidate implementations, and output check-
ing are implemented as separate modules that can
be selected arbitrarily using a test specification file.

New candidate Raft implementations can be
tested in the system by simply defining the runtime
environment using a Docker image and implement-
ing the API to access it. New test types (e.g., new
types of network problems) could similarly be ap-
plied to all implementations by improving the core
tester code; no modifications to the implementation-
specific code would be necessary.

A more exhaustive error checker might simulate
multiple clients to increase the likelihood of finding
synchronization bugs and to increase load on the
system.

This prototype implements only a simple no-
tion of output checking; many classes of errors—
especially those that affect consistency only for
certain time intervals or from certain parties to the
protocol—may not be detected. More sophisticated
strategies would probably yield more comprehen-
sive results.

We restricted our work to the space of Raft
implementations that also provided a key-value store
out-of-the-box. This restriction was one way to
avoid encoding any specific knowledge of Raft
parameters into Flotsam, but other Further work
could test with different state-machine abstractions,
with the goal of being easily applicable to more



4

Raft implementations or of exposing more complex
issues.

Even more broadly, this type of framework—or
even Flotsam itself—could be applied to algorithms
other than Raft.

VI. CONCLUSIONS

Flotsam demonstrates the feasibility and utility of
a “blind”, output-based testing method that pits mul-
tiple implementations of the Raft protocol against
each other to check correctness without an a priori
specification of expected behavior. In addition, it
provides an example of the utility of container-
ized, portable testing environments for distributed
systems—all that is needed to run Flotsam is an
installation of Docker and access to the Internet to
download container images. Such testing techniques
may be a useful addition to a more conventional test
suite, and, if applied on a wider scale, could both
help ensure the quality of Raft implementations and
provide additional data to judge the central claim
of the Raft paper [1] that Raft is actually easier
to understand and implement than older algorithms
like Paxos.

VII. ACKNOWLEDGEMENTS

Thanks are due to the CS244B staff for including
this idea on the list of suggested projects and to Kyle
Kingsbury (Aphyr) for inspiring this line of inquiry
with his excellent work on Jepsen [3].

This work would not have been possible without
the large number of programmers who have created
their own Raft implementations and published them
online, or, ultimately, without the excellent work by
the authors of Raft [1].

This project incorporates or uses a number of
open-source projects, including Docker [6], dns-
masq, and netifaces.

REFERENCES

[1] D. Ongaro and J. Ousterhout, “In search of an
understandable consensus algorithm,” in 2014 USENIX Annual
Technical Conference (USENIX ATC 14). Philadelphia,
PA: USENIX Association, Jun. 2014, pp. 305–319.
[Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro

[2] D. Ongaro. Raft consensus algorithm. [Online]. Available:
https://raftconsensus.github.io/

[3] Jepsen. [Online]. Available: https://github.com/aphyr/jepsen
[4] K. Kingsbury. (2014, June) Call me maybe: etcd

and consul. [Online]. Available: http://aphyr.com/posts/
316-call-me-maybe-etcd-and-consul

[5] Blockade. [Online]. Available: https://github.com/dcm-oss/
blockade

[6] Docker. [Online]. Available: http://www.docker.com
[7] goraft. [Online]. Available: https://github.com/goraft/raft
[8] goraft/raftd. [Online]. Available: https://github.com/goraft/raftd
[9] raftd-forgetful. [Online]. Available: https://github.com/connorg/

raftd-forgetful
[10] A. George. Kayvee. [Online]. Available: https://github.com/

allengeorge/libraft/tree/master/libraft-samples/kayvee
[11] L. Tarenga. lite-raft: raft consensus algorithm written in posix

shell script. [Online]. Available: https://code.google.com/p/
lite-raft/

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://raftconsensus.github.io/
https://github.com/aphyr/jepsen
http://aphyr.com/posts/316-call-me-maybe-etcd-and-consul
http://aphyr.com/posts/316-call-me-maybe-etcd-and-consul
https://github.com/dcm-oss/blockade
https://github.com/dcm-oss/blockade
http://www.docker.com
https://github.com/goraft/raft
https://github.com/goraft/raftd
https://github.com/connorg/raftd-forgetful
https://github.com/connorg/raftd-forgetful
https://github.com/allengeorge/libraft/tree/master/libraft-samples/kayvee
https://github.com/allengeorge/libraft/tree/master/libraft-samples/kayvee
https://code.google.com/p/lite-raft/
https://code.google.com/p/lite-raft/

	Introduction
	Related Work
	System Design 
	Evaluation
	Implementations to Test
	Experimental Setup and Procedure
	Our Testing Plans
	Results

	Further Work
	Conclusions
	Acknowledgements
	References

