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Abstract—Existing methods used to detect and char-
acterize malicious software (malware) are highly labor-
intensive and surprisingly easy to evade. The research com-
munity has produced a number of systems that attempt to
improve these processes using behavioral characteristics.
Here, we present a new system that recognizes and
classifies Android malware based on observed program
behavior. OQur system learns the behaviors that define
various classes of malware from program execution traces,
producing recognizers that can be understood and usefully
employed by human analysts. These recognizers can char-
acterize malware in more detail than other systems, which
mostly discriminate only between malicious and benign
programs. Using knowledge of the Android platform, we
generalize our recognizers to achieve improved robustness
against code obfuscation techniques, especially code re-
placement. We present initial results showing our system’s
promise, and outline a number of areas for future work
to improve its success.

I. INTRODUCTION

Current malware analysis products rely on signatures
that are easy to evade—detection can be circumvented
using simple changes in program code. These signa-
tures are generated using a highly labor-intensive, slow,
expensive process that relies on continuous monitoring
by skilled analysts. Although desktop security products
have likely improved since troubling findings years ago
about their vulnerability to simple evasive techniques [1[],
security researchers have very recently defeated popular
Android security products using even the most basic
modifications, such as changing an application’s name
or repackaging its components in a different order [2].

Once a software sample is identified as malware,
often it is also useful to determine in what way it is
malicious; this process, too, currently relies on skilled
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human analysis. It results in reports which are mainly
intended to be read by humans, not machines. However,
with these reports security vendors, researchers, and
malware analysis companies have effectively produced a
large labeled training set of malicious software that we
can use to train a classifier to find those telltale actions.

Smart automation could improve malware detection
effectiveness and allow skilled analysts to move beyond
repetitive diagnosis and concentrate on finding new,
pressing threats to computer security. We aim to auto-
mate the classification of malicious Android applications
based on application behavior, using the intuition that
software, in order to belong to a certain class of ma-
licious applications, must do certain critical behaviors.
For example, a premium-SMS-fraud application might
often interact in certain ways with the SMS subsystem;
a contact-stealing application might complete certain
calls into both the contacts subsystem and the Internet
subsystem; or a botnet-style application might carry out
idiosyncratic behavior that indicates the existence of a
covert communications or control channel.

Our approach is unique in the literature. Our aim is
not only to automatically identify malicious behavior, but
also to classify samples more specifically than simply as
“malicious” or “benign”. Our projected use is to augment
human analysis rather than simply create another “box”
to deploy. We exploit Android system properties to more
accurately achieve robustness against code replacement.
And, our approach specifically envisions modular re-
calibration of the detection system as threats change.

We first place our work in context in Section[l} We de-
scribe our system and its implementation in Section [
We evaluate its performance in Section outline
further work in Section [V] and conclude in Section

II. RELATED WORK

The detection of malicious software is a topic of
significant research interest. Fundamentally, the prob-
lem of behavioral malware detection is the problem
of bridging the semantic gap between what a program



does that is malicious and how that behavior can be
observed. This concept is explored in the literature, e.g.,
in [3] and later in [4]. In our description of existing
work, we focus on each of a few fundamental tasks
in malware detection: finding already-known malicious
behaviors; discovering what behavior is malicious; and
finding malware specifically on the Android platform.

Most recent approaches rely on system-call depen-
dency graphs, following the intuition of [5] that system
calls, since they are the only way to cause many dam-
aging or security-relevant effects, are an effective way
to detect malicious activity. We use a similar approach,
but can provide richer logging because of Android’s
design features, including a richer permissions system, a
recognizable set of sensitive data and metered resources,
and a standard way to profile application behavior in
great detail.

A. Finding Known Malicious Behaviors

Some older approaches analyze program text instead
of execution traces. Bergeron et al. use a static analysis
technique based on control-flow and data-flow graphs,
though they provide no analysis of its effectiveness [6].
Their system requires security policies to be specified
manually using “security automata”, in which transitions
are identified by system calls. The control-flow graph
is filtered to include only calls to “critical APIs”. Our
approach similarly allows filtering, but provides a repro-
ducible method to do so and evaluates its effectiveness.

Responding to the finding that commercial mal-
ware detectors performed poorly against basic obfus-
cation techniques [1f], Christodorescu et al. present a
“semantics-aware” detection scheme in [[7]. The system
is effective against certain obfuscations, using decision
procedures and heuristics to establish whether sections of
code are irrelevant to a program’s effects and can thus be
ignored in analysis. This system relies on hand-specified
templates of malicious behavior, expressed in an in-
termediate semantic representation to achieve greater
robustness against obfuscation. With similar goals and
results, Kinder at al. introduce a new temporal logic
in [§] and use model checking to verify that malicious
behaviors, represented by hand-specified logical formu-
las, are absent from programs under consideration. Both
techniques rely on matching instruction sequences rather
than system calls. It is unclear whether this style of
detection is still in use.

The use of static analysis has fallen out of favor, likely
due in part to the theoretical difficulty and practical chal-
lenges of using static analysis tools against increasingly
obfuscated code [9]. Static analysis efforts must also

deal with encrypted or “packed” code—dynamic analysis
tools can simply wait for such code to be deobfuscated
and executed, then observe its effects.

Martignoni et al. attempt to address the semantic gap
by constructing layered behavior graphs that specify
events that, when observed together in an program exe-
cution trace, indicate that a specific meaningful behavior
has occurred [4]]. The system they present relies, again,
on hand-specified descriptions of malicious behavior, but
demonstrates the utility of “widening” detection graphs
to include the multiple ways a specific action might
be carried out, and therefore might be observed by a
detector.

B. Deriving Malicious Behavior Specifications

Deriving specifications of malicious behavior—
automatically discovering what, in fact, makes a pro-
gram malicious—is a natural next step. More recent
work, therefore, relies less on hand-specified templates
of malicious behavior, and instead attempts to derive
specifications without any a priori definition of malice.

Babi¢, Reynaud, and Song [10] introduce a technique
similar to ours, which uses tree automata to classify soft-
ware based on system call dependency graphs. Although
our system currently uses grammar inference on strings
of system calls, these techniques are similar.

Palahan et al. [11] present techniques to identify
critical pieces of system call dependency graphs, toward
the goal of recognizing high-confidence malicious be-
havior patterns in sets containing malware and goodware
(software that is not malicious).

HOLMES, presented in [[12]], builds on previous work
by many of its authors [13]]. The system is comprised of
a complex series of processing and inference steps that
produce behavioral specifications for malware. While
the system achieves good detection results, it relies
on a number of unclear heuristic techniques, including
curated lists of “security labels” derived from reading
documentation.

Our desire to design a modular, tunable system is
driven by results including [[14]], which found that simple,
reasonable intuitions can actually lead malware detection
researchers to make non-optimal design decisions.

C. Android Malware Analysis

While most of the the literature on malware analysis
primarily concerns Windows or Linux malware, some
recent work focuses specifically on Android.

Zhou and Jiang present a corpus of Android malware
and provide useful analysis of its contents in [[15]. Their



results, based on a highly manual collection, categoriza-
tion, and characterization process, are the basis of our
current malware corpus.

Au et al. present the PScout tool and analysis of the
Android permissions system in [[16]]. PScout uses static
analysis to automatically annotate system methods with
the permissions with which they are protected.

A number of systems attempt to identify malicious
applications on Android. These mainly rely on system
call interposition, similar to desktop efforts, but appear
to base detection mostly on feature vectors for detection
[17]—[19]. Such approaches, based on vectors of method
call frequencies, are robust against reordering but can be
evaded by inserting irrelevant or ineffectual calls.

In addition to systems that attempt to find actual
malicious behavior, some tools analyze security configu-
rations to identify potential security flaws. Such systems,
for instance, detect when an application violates the
principle of least privilege by requesting more privileges
than are actually necessary for proper operation [20], or
when multiple applications together request a dangerous
combination of privileges [21].

D. Limitations

Although research efforts have narrowed the semantic
gap in various ways, limitations remain. Recent work has
demonstrated the ability of Android malware to detect
when it is running in an emulator [22], [23]]. The malware
can infer that execution in a virtual environment means
it is being analyzed for security purposes and simply fail
to trigger its malicious behavior to avoid detection.

Emulators may also not provide a sufficiently faithful
illusion of the “real world”, preventing certain malware
from exhibiting its malice. For instance, a piece of
malware might rely on network connectivity to specific
websites to obtain commands, or might need to download
additional code from a server. The research community
has introduced various methods that achieve greater code
coverage in spite of these limitations, either by providing
richer emulation [12] or by detecting some of these
dependencies and bypassing them [24]].

These issues are beyond the scope of our work. Al-
though these problems might prevent us from obtaining
program traces that include malicious behavior, input
generation and adversarial evasion are both already in-
herent problems for detection approaches that are based
on dynamic analysis. Improvements in emulators or user-
interaction simulators would simply provide better input
to the rest of our process.

( Capture Traces )

(" Filter Methods )

( Infer a Language )
4
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4

( Evaluate )

Fig. 1. A basic outline of our system’s design.

III. SYSTEM DESIGN

We use method calls to measure the behavior of each
application under consideration. This is conceptually
similar to using system calls (syscalls) to ascertain
program behavior, a common technique in the literature
(4], [5], [10]-[13]. We trace the program’s execution,
filter the output, and use grammar inference to create a
recognizer for each class of programs. We then transform
the recognizer to make it more robust to adversarial pro-
gram obfuscation, and, last, use the recognizer’s output.

A simple diagram of this process is in

A. Capturing Program Traces

Our system is implemented using the standard An-
droid profiler, which captures all method calls on all
threads started by the application under consideration.

We inject simulated user behavior using the An-
droid Monkey tool [25]], which randomly generates user-
interface events such as button presses and screen
touches and gestures. Noting the finding of [15] that
some malicious behavior is only triggered by certain
external events, we use the Android Debug Bridge [26]
to simulate external events including the reception of a
telephone call, the reception of an SMS text message,
and a change in the hardware’s power state.

The data returned by the profiler is extremely detailed,
producing multiple megabytes of logs for even short
executions. To concentrate on relevant behavior and more
closely approximate syscall analysis, we filter the records
using various techniques.

An example of a relevant trace output is the record of
a call to an SMS-sending function shown in [Figure 2

Records of this type indicate the thread on which the
activity was recorded (in thread 1); whether the



1 ent 531644

..... android/telephony/gsm/SmsManager.sendTextMessage
(Ljava/lang/String;Ljava/lang/String;
Ljava/lang/String ;Landroid/app/PendinglIntent;
Landroid/app/Pendinglntent;)V

Fig. 2. An example of output from the trace.

call is entering or exiting (entering); the time in usecs
(531644); the stack depth (5, one level per *.’); the class
and method name; and the method signatureE]

We define various methods of filtering the records
outputted by the profiler. Our implementation allows the
following options:

o Permissions: Include any method that is protected
by an Android permission, optionally outputting
that permission. We obtain these annotations from
the PScout project [[16].

o Data-flow: Include any method that is either a
possible source or a possible sink of sensitive data,
optionally outputting that data-flow annotation. We
obtain these annotations from the STAMP project
at Stanford [27]].

e Android APIs: Include any method, regardless of
annotation, that is from an internal Android class.

By default, our implementation includes only those
methods that bear either a permissions or data-flow
annotation, since these are the behaviors most likely
to involve private information or the use of a metered
or billed resource. It also filters a small number of
labels that are meaningful in other contexts but not
for malicious behavior detection. Without an a priori
definition of malice, we cannot make further judgments
at this stage about whether a trace is malicious; we must
leave this this task to the inference process.

Our implementation merges the activities of separate
threads together in real-time chronological order of ex-
ecution, but can be configured to treat each thread’s
method calls as separate traces. The output of this step
is a series of filtered method calls which are then fed to
the grammar inference step.

B. Creating a Recognizer

Once we have obtained program traces, we use stan-
dard grammar inference tools to create a recognizer. We
currently use the K-Testable algorithm as implemented
in the open-source gifoolbox project [28[]. This algorithm
infers a k-testable language [29], with individual system

'The method signature is expressed in the format of the Java
specification, part 4.3.2. http://docs.oracle.com/javase/specs/jvms/se7/
html/jvms-4.html#jvms-4.3,
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Fig. 3. An example of K-Testable inference using[3(a)]as input traces.
is the DFA inferred using k = 3. The accept state is solid.
Transitions are labeled with the event that would cause them to be
taken. Inside each box is the prefix “remembered” by the DFA.

calls as its alphabet. The language is recognized by
a DFA D that is returned by the inference algorithm;
D accepts all traces on which it is trained, plus those
included due to the algorithm’s generalization based on
the parameter k, which limits the amount of “memory”
available to the detector to a sliding window of size
k. While limiting the detector’s window size might
seem to reduce effectiveness, results from the literature
indicate that small windows can achieve good detection
results [5], in some cases better than larger windows
[14]. Setting k£ to be longer than any existing trace
demonstrates the potential for decreased performance
with a larger window; with such a large k, the learned
language would include only the training examples and
no other strings.

We illustrate the inference process with a simple

example in We produced the DFA in using
gitoolbox from input directly transformed from [3(a)l This

example is simplified for space and readability;
contains an example of the format of the name, class,
and signature of a method as it would actually appear in
a trace. This example might correspond to a hypothetical
piece of malware that is receiving commands about
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which files to copy to an attacker’s server. The learned
DFA “remembers” k — 1 symbols, so, in this case with
k = 3, the DFA tracks the two previous calls. Note
that the language of the DFA includes any number (at
least one) of repetitions of the Read and Send calls
after a List call; this allowance is an example of the
algorithm’s generalization effects. If we add a trace
that only has the first List call (i.e., consisting only of
ReadDirectoryList () ), the DFA simply marks the
“List” state as an accept state; however, without such an
example, the DFA will not accept that string.

We “widen” the inferred DFA to make it more ro-
bust against code replacement. The DFA should still
recognize the malicious behavior even if one method
call is replaced with another that could retrieve the
same data or have the same effect. This technique is
implemented through the use of the permissions and
data-flow annotations discussed in if a method is
annotated, its name in the DFA is effectively replaced
with its annotation. In this way, any new method that is
annotated identically to the first method (indicating that
the two have similar effects) will also be recognized.
This effect is illustrated in If we had simply
used the automaton shown in 4(a)l we would miss
any of the additional methods shown in f(b)} allowing
malware authors to evade detection by replacing the
original method with one of these similar methods. The
collapsed representation, which replaces the method with
its permission label, is shown in

The DFAs produced by this method have, in our
experience, been reasonably easy to understand. We
anticipate that human analysts will be able to understand
and refine the specifications derived from the inference
process.

IV. EVALUATION

We carried out a number of experiments to evaluate
the effectiveness of the techniques we have presented.
All experiments reported here were conducted using the
malware collected by Zhou and Jiang in the Malware
Genome Project [[15]]. This dataset contains 1,260 sam-
ples from 49 separate families.

Our malware corpus is annotated with the class la-
bels identified in the Malware Genome Project dataset
[15]. These classifications are based on the following
attributes: the method used to escalate privilege; the
presence of a remote control channel; the unauthorized
use of billable resources; and the theft of personal
information. The number of example programs for each
of these classes is shown in for details, see [13].

We attempted to evaluate the system with a set
of goodware that we obtained by crawling a popu-
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Fig. 4. An example of DFA widening. Transitions are labeled with
the event that would cause them to be taken. The original DFA is
modeled in A conceptual example of “widening” is shown in
[E®)] and a more concise representation is shown in

lar Android application store. However, we could not
obtain adequate tracing data due to the applications’
incompatibility with the old version of the Android OS
(2.2.3) that we used due to the age of the malware
corpus. Similarly, many of the malicious applications
crashed immediately once launched or encountered other
problems that interfered with tracing when executed.
We conducted two sets of experiments:

+ Malware Evolution: A common measure of suc-
cess for behavior-based malware is the ability of a
signature generated with one version of malware to
later detect successive versions of the same mal-
ware. In this set of experiments, we use traces from
early DroidKungFu versions and measure detection
rates against later versions.

o Class Detection: We used traces only from appli-
cations that belong to specific classes, as assigned
in [15]]. We measure detection against others from
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TABLE I

CLASS SIZES IN THE MALWARE GENOME PROJECT DATASET [[13]]

Class | Families [ Samples
Privilege Escalation
Exploid 6 389
RATC/Zimperlich 8 440
Ginger Break 1 4
Asroot 1 8
Encrypted 4 363
Remote Control
Network 27 1171
SMS 1 1
Financial Charges
Phone 4 246
SMS 28 571
Block SMS 17 315
Personal Information Stealing
SMS 13 138
Phone Number 15 563
User Account 3 43

that set.

We use the experimental configurations in [Table II

TABLE II

EXPERIMENTAL CONFIGURATIONS

Filters

Widening

Permissions-protected only

Using permissions

Data-flow-annotated only

Using data-flow

W —| 3k

Data-flow or permissions-protected

None

A.

Malware Evolution

Our first test attempted to recognize successive gen-
erations of the DroidKungFu malware family. Details of
the differences between each generation can be found
in [15]. The behavioral detection process, even though
it uses only the relatively simple input generation and
grammar inference processes described above, detects a
large number of the successive variants of DroidKungFu.
In the first set of bars indicates the results
obtained when training on DroidKungFu version 1 and
testing against 2 and up, the second set indicates training
on DroidKungFu versions 1 and 2 while testing against
3 and up, and so on. The inference process by design
creates a detector that will recognize 100% of training
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Fig. 8. Detection rates against a test set consisting of 20% of the
malware that steals phone numbers, trained on the other 80% of this
set of malware. The total size of this class is 113. Each trial was
conducted using a separate partition into the training and test sets.

examples. The size of the test set decreases as we
shift traces from successive variants of the DroidKungFu
family from testing to training, but the detection rate
increases.

The DFA learned by a Malware Evolution test is
shown in[Figure 5] While the DFA may appear somewhat
large, it is notable that the recognizer for an entire class
of malware contains only 17 states. Traces generally con-
tain hundreds of thousands of method calls, producing
files tens of megabytes long for each trace, which lasts
less than a minute in the Android emulator. Filtering
using data-flow or permissions labels significantly re-
duces the size of the traces, down to tens or hundreds of
events per trace, and sometimes even down to zero if no
permissions-protected or data-flow-relevant actions were
performed. Inference took under a minute in all cases,
and many times completed within a few seconds.

This experience also shows the value of the widening
process. The grammars learned using method names
(even filtered to include only “interesting” calls, defined
as those with either a data-flow or permissions label),
achieved worse detection results compared with those
learned using widening processes. In addition, the infer-
ence process failed to complete when presented with the
large vocabulary present in a language consisting of so
many method names.

False-positive rates using malware of types other than
DroidKungFu are plotted in[Figure 7} Once an acceptable
set of goodware can be obtained, we will generate more
detailed false-positive statistics. DroidKungFu shares

many behavioral characteristics with other malware fam-
ilies, so the performance against non-DroidKungFu mal-
ware illustrates how specifically the learned model fits
the DroidKungFu family.

B. Class Detection

Our next experiment demonstrates our system’s utility
for the recognition of behavioral classes that are more
specific than simply “malicious” versus “benign”. We
ran our system on the class of malware that steals
phone numbers. We divided the set of malware into
five trials with training and test sets that contained
80% and 20% of the traces, respectively. The detection
rates against the test sets are shown in (As
noted before, the inference process creates a detector
that will recognize 100% of training examples.) We
computed false positive rates by training with the entire
set of phone-number-stealing malware, then testing on
the traces from other types of malware. Using dataflow,
the detector mistakenly accepted 45% of the traces; with
permissions, the detector mistakenly accepted 69% of the
traces. In both cases, this rate is lower than the detection
rates against true members of the class as shown in
Figure 8| suggesting that a positive result provides useful
information.

V. FURTHER WORK

This paper demonstrates the promise of our approach,
but there are a number of ways that the preliminary
design described here could be improved.

Our system currently employs Android’s default Mon-
key tool to generate random input to applications under
test. More sophisticated techniques have been shown to
obtain significantly better code coverage [24]], and we
believe similar work would allow our detection system
to identify malware that requires more complicated con-
ditions to trigger malicious actions. In addition, newer
testing tools like Dynodroid produce a larger variety of
events [30]], including the types of events that trigger
many malware families in our malicious corpus. These
tools may therefore provide more opportunities to trigger
malicious behavior in the programs being tested and
learn more tell-tale signs of malice.

To avoid false positives, we need a way to remove
the behaviors that are exhibited by programs outside of
the class we are attempting to describe (for instance,
goodware, or malware of a different type). We plan to
accomplish this goal by removing paths from the inferred
DFA or using probabilistic process that would discount
behaviors that also occur in goodware, perhaps in a way
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similar to that used in the production of stochastic k- VI. CONCLUSIONS
testable tree languages [31]]. This work might also help
isolate the most critical, tell-tale behaviors present in

each class. )
We presented the design of a new system to detect

and classify malware on the Android platform through
behavioral analysis. Our system design drew on the
insights of the research community’s existing work on
behavioral analysis and applied features unique to the
Android system, including a rich permissions system
and well-defined interface for access to sensitive subsys-
tems, to improve robustness against common obfuscation
techniques. Using our initial system implementation, we

More generally, we note that most malware detection
systems found in the literature concentrate on a single
type of detection—for instance, as in our system, only on
behavior. However, improved results might be obtained
by combining indicators from different types of analysis,
for instance by using behavioral analysis, permissions
configuration, and static analysis techniques together.

Our system is built to allow modular experimentation,
and we plan to explore the use of new techniques at each
step of the process: behavioral monitoring, filtering and
widening, inference, and analysis.

demonstrated that behavioral analysis is a promising
method for Android malware detection and classification.
We plan to explore improvements in various parts of our
system to achieve improved results.
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